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Basics of descriptive set theory

I Let Σ0
1(X) = O(X).

I Let Π0
α(X) = {X \ U | U ∈ Σ0

α(X)}.
I Let Σ0

α+1(X) = {
(⋃

n∈N An
)
| An ∈ Π0

α(X)}.
I Let ∆0

α(X) = Σ0
α(X) ∩ Π0

α(X)

I A function f is called B-measurable, if f−1(U) ∈ B for any
U ∈ O(Y).



Banach Hausdorff Lebesgue theorem

Theorem (BANACH, LEBESGUE, HAUSDORFF)
The Σ0

n+1-measurable functions between separable metric
spaces are exactly the pointwise limits of Σ0

n-measurable
functions3.

3Restrictions apply



Some fundamental results II

Definition
f : X→ Y is piecewise continuous, if there is a closed cover
(An)n∈N of X such that any f|An is continuous.

Theorem (Jayne & Rogers)
Let X, Y be Polish spaces. A function f : X→ Y is
∆0

2-measurable, iff it is piecewise continuous.



Represented spaces and computability

Definition
A represented space X is a pair (X , δX ) where X is a set and
δX :⊆ NN → X a surjective partial function.

Definition
f :⊆ NN → NN is a realizer of F : X→ Y, iff F (δX (p)) = δY (f (p))
for all p ∈ δ−1

X (dom(F )).

NN f−−−−→ NNyδX

yδY

X F−−−−→ Y

Definition
F : X→ Y is called computable (continuous), iff it has a
computable (continuous) realizer.



Endofunctor

An endofunctor d is an operation on a category, mapping
objects to objects, identities to identities and morphisms to
morphisms that respects composition.
We shall pretend that in a cartesian closed category with

exponentials E , for any two fixed objects A, B an endofunctor d
induces a map d : E(A,B)→ E(dA,aB).



The jump of a represented space

Consider lim :⊆ NN → NN defined via
lim(p)(i) = limj→∞ p(〈i , j〉).

Definition (ZIEGLER)
Given a represented space X = (X , δX), introduce
X′ = (X , δX ◦ lim).

Proposition (ZIEGLER)
The lifting map id : C(X,Y)→ C(X′,Y′) is well-defined and
computable.



More on the jump

Theorem (BRATTKA)
The following are equivalent for f : X→ Y, with X, Y CMS:

1. f ≤W lim relative to some oracle
2. f is Σ0

2-measurable
3. f : X→ Y′ is continuous

Remark: 2. is a backward-notion, while 3. is a forward notion.



Realizer vs topological continuity

Proposition
The map f 7→ f−1 : C(X,Y)→ C(O(Y),O(X)) is computable for
all represented spaces X, Y.
Remark: Continuity for represented spaces is a forwards
notion, topological continuity a backwards notion.



Admissibility

Definition (SCHRÖDER)
Call X (computably) admissible, if the canonic map
κ : X→ C(O(X), S) is (computably) continuously invertible. κ
maps x to U 7→ U(x).

Theorem (SCHRÖDER)
Y is (computably) admissible, iff for any X the map
f 7→ f−1 : C(X,Y)→ C(O(Y),O(X)) is (computably)
continuously invertible.
Remark: So admissibility makes forwards and backwards
notions coincide.



Computable endofunctors and basic notions

Definition
An endofunctor d on the category of represented spaces is
called computable, iff for any represented spaces X,Y the
induced map d : C(X,Y)→ C(dX,dY) is computable. (Tacit
assumption: d does not change the underlying sets.)

Definition
Call f : X→ Y d-continuous, iff f : X→ dY is continuous.

Definition
Call U ⊆ X d-open, iff χU : X→ dS is continuous. The space of
d-opens is Od (X).

Definition
Call f : X→ Y d-measurable, iff f−1 : O(Y)→ Od (X) is
continuous.



A first observation

Proposition
Any d-continuous function is d-measurable.

Definition
Call Y d-admissible, if the canonic map
κd : dY→ C(C(Y,S),dS) is computably invertible.

Theorem
If Y is d-admissible, then for functions f : X→ Y d-continuity
and d-measurability coincide.



Some structural properties

Theorem
Let d satisfy (d(X× X) ∼= dX× dX) (dC(N,X) = C(N,dX)) for
all represented spaces X ,Y. We may conclude:

1. (f ,U) 7→ f−1(U) : C(X,Y)×Od (Y)→ Od (X) is well-defined
and computable.

2. ∩,∪ : Od (X)×Od (X)→ Od (X) are well-defined and
computable.

3. Any countably based admissible space X is d-admissible.
4.
⋃

: C(N,Od (X))→ Od (X) is well-defined and computable.



The jump operator

Proposition
′ is a computable endofunctor satisfying C(N,X)′ ∼= C(N,X′).

Proposition
The map (Ui)i∈N 7→

⋃
i∈N(X \ Ui) : C(N,O(X))→ O′

(X) is
computable. If X is a computable metric space, then it is even
computably invertible.

Corollary
For a computable metric space X, Σ0

2(X) = O′
(X).



Banach Lebesgue Hausdorff Theorem

Corollary (Banach Lebesgue Hausdorff Theorem)
Any countably-based admissible space X is

′
-admissible, i.e.

−1 : C(X,Y′
)→ C(O(Y),O′(X)) is computable and computably

invertible.



Changing the sets

Consider the computable endofunctor K mapping a space to
the space of its compact subsets.

Observation
The K-continuous functions from X to Y are just the upper
hemicontinuous multivalued functions from X to Y.



The finite mindchange endofunctor

Definition
Define ∇ :⊆ NN → NN via ∇(w0p) = p − 1 iff p contains no 0.
Define an operator ∇ via (X , δX )∇ = (X , δX ◦ ∇).

Observation
∇ is a computable endofunctor preserving binary products.

Proposition
Let X,Y be computable metric spaces. Then f : X→ Y is
piecewise continuous iff f : X→ Y∇ is continuous.

Proposition
O′(X) ∩ A′(X) = O∇(X)



Back to the abstract picture

Definition
We call a space X d-Hausdorff, iff x 7→ {x} : X→ Ad (X) is
computable.

Observation
Being ∇-Hausdorff corresponds to the TD separation axiom.



The effective Jayne Rogers theorem

Theorem
If Y has a total representation δY : {0,1}N → Y and is
∇-Hausdorff, then it is ∇-admissible.

Corollary
For computable metric spaces, f : X→ Y is (uniformly)
∆0

2-measurable, iff it is piecewise continuous.



The proof

We need to show that
(x , f−1) 7→ f (x) : X× C(O(Y),∆0

2(X))→ Y∇ is computable. To
do this, show that (x , f−1) 7→ f (x) : X× C(O(Y),∆0

2(X))→ Y is
non-deterministically computable with advice {0,1}N × N and
use:

Theorem (Brattka, de Brecht & P.)
If f : X→ Y is single-valued and non-deterministically
computable with advice {0,1}N × N, then it is computable with
advice N.

Proposition (Brattka, de Brecht & P.)
A function is non-deterministically computable with advice N, iff
it is computable with finitely many mindchanges.



The algorithm

1. Guess n ∈ N and p ∈ {0,1}N encoding some y ∈ Y.
2. Compute Y \ {y} ∈ O(Y).
3. Compute f−1(Y \ {y}) =

⋂
i∈N Oi (more generally

= A ∈ A′(X)).
4. Test x ∈ Oi for all i ≤ n (evaluate the first n approximations

of A(x)), and reject if all answers are positive.
5. Output y .



Counterexamples

Example
There is a function f :⊆ {0,1}N → {0,1}N such that for any
computably open set U ⊆ {0,1}N the set f−1(U) is effectively
∆0

2, yet f is not even non-uniformly computable.

Example
There are countably based quasi-Polish spaces that are not
∇-admissible.



More synthetic?

Can properties of specific endofunctors on represented spaces
such as ′ be explained by generic characterizations, e.g. ′ being
the minimal computable endofunctor above id preserving
countable products?



Understanding represented spaces

What represented spaces have total Cantor space
representations? What other (new) properties of spaces are
relevant for this approach to descriptive set theory?



Understanding the projective hierarchy

How does the endofunctor for the projective hierarchy look like?
To what extent can Suslin’s theorem that ∆1

1 =
⋃

α Σ0
α be

generalized?
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